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Dot Product Texture Blending and Per-Pixel Lighting 
Sim Dietrich 

Please send me comments/questions/suggestions 
Sim.dietrich@nvidia.com 

 
Problem Statement 
 

Traditional per-vertex lighting requires a high-level of tessellation to achieve a 
smooth look.  Textures are often used to simulate additional detail rather than adding 
more triangles to a scene or model.  For instance, a polygonal character might have a 
smooth round head with texture-mapped facial features. Effectively the artist is 
attempting to give the impression of more detail than is present in the geometry.  This 
discontinuity becomes apparent when the face is not lit properly with respect to the 
environment – it can’t be lit properly, because lighting is applied per-vertex and the face 
only exists as texels from a texture map.  

 
Textures typically are employed as lighting look-up tables.  The lighting solution 

is pre-calculated at level build time and stored in the texture map ( ie lightmap).  Because 
the lighting equation is pre-computed, this makes it difficult to combine correctly with 
dynamic lights calculated at run-time. 

 
The ideal lighting environment would involve a surface description at maximum 

detail which contained enough information to recalculate the lighting at runtime. 
 
What would such a description look like?  Well, dynamic lighting is typically 

defined per-vertex and interpolated across a triangle, so a triangle-based lighting system 
seems the most logical place to start.   

If we are using triangles, how big should they be?  Well, for maximum detail, 
they should be pixel-sized.  Any bigger and we have sacrificed potential detail, and any 
smaller and we are wasting resources. 

 
Pixel-sized Triangles 

 
So, suppose that we could have pixel-sized triangles.  Each pixel would contain 

an x,y,z position, diffuse and specular color material properties, one or more sets of 
texture coordinates and a surface normal.  This would be enough information to properly 
compute the lighting on a per-pixel basis. 

 
But with the traditional approach of specifying triangle vertices, it seems 

impossible to guarantee that a triangle was exactly pixel sized, and not bigger or smaller, 
so how can this be achieved?  We need a greater level of detail than per-vertex, 
something that scales one to one with pixels.  It turns out that texels meet this 
requirement, if they are fetched from mip-mapped textures of a high enough resolution.  
Each textured pixel on the screen corresponds to a small set of filtered texels.  If the 
maximum texture resolution meets or exceeds that of the maximum screen resolution, we 
can achieve the goal of one pixel to one texel. 
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So, assuming that our graphics hardware target allows for 2048x2048 textures, we 
can meet this requirement for any pixel resolution up to 2048x2048 in size. 

 
Now let’s see how we can achieve a per-pixel surface description.  Since we are 

utilizing textures for our surface description, we can use any value looked up in a texture 
or interpolated across a triangle.  Basically, any value available in the texture combiners 
is fair game.  For DX7, these include D3DTA_DIFFUSE, D3DTA_SPECULAR, 
D3DTA_TEXTURE, and D3DTA_TFACTOR.  Additionally, we can complement and 
alpha replicate as necessary for more control. 

 
We could use D3DTA_DIFFUSE and D3DTA_SPECULAR for the diffuse and 

specular material properties at this pixel, or we could look them up from a texture 
instead.  We could use D3DTA_TFACTOR to represent ambient light intensity, or some 
other constant value.  The position is implicitly calculated per-pixel and is not explicitly 
available per-pixel.  Also note that there is no access to the per-vertex surface normal 
either.  This is the key limitation we need to overcome to compute detailed lighting, and 
D3DTOP_DOTPRODUCT3 is the answer. 

 
The innovation of D3DTOP_DOTPRODUCT3 is to treat a RGBA value as a 3D 

vector representing X, Y and Z.  If we set the combiners up like so : 
 
SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_DIFFUSE ); 
SetTextureStageState( 0, D3DTSS_COLOROP,     D3DTOP_DOTPRODUCT3); 
SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_SPECULAR); 
 
We achieve a per-pixel dot product.  This can be used as part of a lighting 

equation.  The vectors are defined per-vertex in the .color and .specular portion of the 
D3DVERTEX and linearly interpolated across the triangle on a per-pixel basis. 

 
This has its uses, but fails to achieve our goal of a per-pixel surface description 

because we can only have surface normal discontinuities between vertices, and not on a 
per-pixel basis.  Here is a better way to set up the combiners to achieve this end : 

 
SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TFACTOR ); 
SetTextureStageState( 0, D3DTSS_COLOROP,     D3DTOP_DOTPRODUCT3); 
SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_TEXTURE); 
 
Here we have asked the combiners to perform a dot product between the constant 

D3DTA_TFACTOR and the filtered texel for each pixel across the triangle.  If we put a 
light direction vector into D3DTA_TFACTOR and a surface normal in the texture 
referenced by D3DTA_TEXTURE, then we can compute the correct per-pixel directional 
lighting intensity.   
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Here is an example of per-pixel diffuse directional lighting ( note that this is only 
two triangles, as evidenced by the wireframe version on the right ) : 

   

 
 
 
 

What is Dot Product Texture Blending? 
 

The D3DTOP_DOTPRODUCT3 texture blending mode was introduced in 
DirectX 6.  The GeForce 256 supports this mode under Dx6 or Dx7 for D3D, and under 
OpenGL with the NV_register_combiners extension.   

 
The D3DTOP_DOTPRODUCT3 texture blending mode is often considered to be a bump 
mapping technique.  It certainly can be used for bump mapping, but more generally it can 
compute per-pixel lighting.  This blend mode can be used to compute a per-pixel dot 
product of normalized vectors, which is the fundamental operation behind both the 
diffuse and specular lighting calculations.  With some clever programming using DOT3, 
we can perform per-pixel lighting.  Because lighting is computed on a per-pixel basis, we 
can achieve bump mapping as well, by brightening or darkening a pixel depending on 
how nearly the pixel is facing the light direction.  This is an exact analogue of flat 
shading a triangle.  A flat shaded triangle is shaded like so : 
 
Intensity = SurfaceNormal DOT VectorTowardLight 
 
To simulate a per-pixel flat-shaded surface, each pixel of the screen maps to a small set 
of texels ( if mip-mapped and of a high enough resolution ) that when point-sampled or 
averaged together yield not a color, but a normalized vector in RGB form. 
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What is the math behind Dot Product Texture Blending? 
 
The DOTPRODUCT3 blend mode takes the R, G and B portions of each color 

argument, ranging from 0 to 255, and scales these values to lie from –1 to 1.  Next, a dot 
product is performed, producing a scalar value.  This resultant value is clamped to the 
range [0,1], so negative dot products map to 0.  Next the value is replicated into the 
R,G,B and A channels.  Note that clamping negative scalars to 0 is exactly what we want 
for computing lighting, because we don’t want surfaces facing away from a light to be lit. 

 
Here is C++ code that performs the dot product blending operation : 
 

unsigned char red1 = 0x20; 
unsigned char green1 = 0x60; 
unsigned char blue1 = 0x20; 

 
unsigned char red2 = 0x00; 
unsigned char green2 = 0x00; 
unsigned char blue2 = 0x80; 
 
// Scale from [0, 255] to [–1.0f, 1.0f] 
float theScaledRed1 = ((float)red1 – 127.5f ) / 127.5f;  
float theScaledBlue1 = ((float)blue1 – 127.5f ) / 127.5f;  
float theScaledGreen1 = ((float)green1 – 127.5f ) / 127.5f;  

 
float theScaledRed2 = ((float)red2 – 127.5f ) / 127.5f;  
float theScaledBlue2 = ((float)blue2 – 127.5f ) / 127.5f;  
float theScaledGreen2 = ((float)green2 – 127.5f ) / 127.5f; 
 
float theDotProduct = theScaledRed1 * theScaledRed2 +  

  theScaledGreen1 * theScaledGreen2 +  
                      theScaledBlue1 * theScaledBlue2; 
// Clamp <= 0.0f to 0.0f and convert to unsigned char 
unsigned char temp = (unsigned char) 

max( 0.0f,theDotProduct*255.0f)); 
 
DWORD theFinalResult = ( temp << 24 ) |( temp << 16 )|( 
temp << 8 ) | temp; 

 
As you can see from the sample code above, this is a significant calculation that the 
texture blending units in the GPU can offload from the host processor.  The final scalar 
value is replicated into R,G, B and Alpha of the result.  This scalar value represents a 
grayscale value that can be output to the frame buffer or used in additional texture 
blending calculations. 
 
For the purposes of this document, we will simply compute this grayscale value, ignoring 
light or material colors.  These can be easily factored in through additional textures or 
render passes.  We will also assume directional ( infinite ) lights. 
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What Does Dot Product Texture Blending do for me? 
 
In addition to per-pixel lighting, the DOTPRODUCT3 Texture Blending can be used for 
bump mapping. 
 
Many readers will be familiar with the Embossing bump mapping technique.  All modern 
hardware supports this in one flavor or another.  The downside to embossing lies in the 
significant per-vertex CPU cost in calculating U,V coordinates, as well as the varied 
vendor support for single-pass embossing techniques. 
 
Dot product bump mapping does not require any per-vertex CPU calculations for diffuse 
lighting, and in many cases the specular bump mapping techniques can reduce the per-
vertex CPU cost to simply a vector subtraction.  Thus, dot product bump mapping can 
produce high-quality detail at a minimal CPU cost. 
 
 
Computing Normal Maps 
Dot products operate on XYZ vectors, and textures and per-vertex colors are specified 
with RGBA colors, so one key to the technique lies in the mapping of RGB colors to 
XYZ triplets described above.  We could put a RGB-encoded vector at each texel in a 
texture, and thus give the hardware a new vector at each texture look up.  Here is a 
procedurally generated normal map:  

 
This particular map represents a hemisphere.  Each texel on the map is an RGB-encoded 
vector that corresponds to a unit vector from the origin.  Note the corners of the square 
are grey ( 0x00808080 ) which is the RGBA encoded version of the zero vector < 0,0,0 >.  
There is a small amount of noise generated for visual interest. 
 
Normal maps are easy ( though not especially cheap ) to procedurally generate, but it 
would be very difficult to author them directly by painting RGB colors onto a mesh.  A 
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better approach for authoring normal maps involves using an alpha-height field, as one 
would for embossing.   
 
Each alpha value represents a height along the normal of the surface on which the normal 
map texture is applied.  One can consider the alpha value to be a measure of displacement 
of the surface 
Simply sample an alpha value from 3 adjacent texels in a triangular pattern.  Then use the 
surface orientation to calculate an offset from the origin for each sample based on the 
alpha height.  Next find the normal vector of the triangle formed by the three texel 
samples via a cross product.  Normalize the cross product, and store as an RGB triplet 
back into the texture with the alpha texels.  We now have an RGB-encoded normal map. 
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Here is an example normal map created exactly this way ( best viewed in 32 bit color ): 

 
 
Note the blue-gray color ( 0x008080FF ) that corresponds to < 0, 0, 1 > over the majority 
of the map.  This normal is the same as the surface normal, thus it generates no bumps 
relative to the surface. 
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Now that we have a normal map, how do we use it to produce lighting effects? 
 
For a directional diffuse light, we could store the vertex normal in the D3DTA_DIFFUSE 
component at each vertex.   
 
Next we can store the vector from the vertex to the light ( the opposite of the light 
direction for a directional light ) in the D3DTA_TFACTOR component. 
 
 
Then the intensity at each vertex would be calculated as : 
 
Intensity = VertexNormal DOT LightVector 
 
Intensity = DIFFUSE DOT TFACTOR 
 
This will generate a relatively smooth shading effect when calculated per-vertex.  With 
our normal map, however, we can calculate this equation per-pixel instead, by placing 
our normal map into texture unit 0. 
 
Intensity = SurfaceNormal DOT LightVector 
 
Intensity = TEXTURE0 DOT TFACTOR 
 
We now have a per-pixel lighting calculation performed by the hardware. 
 
Here is an example shot of per-pixel lighting in action.  Run the DotBump example for an 
interactive version.  Simply move the mouse to change the light direction. 
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What about Specular? 
 
Specular lighting is more involved, due to the fact that it is view-dependent.  This means 
that the direction from the vertex to the viewer must be taken into account.  This is in 
contrast to diffuse lighting, where the view direction is irrelevant, and only the relative 
orientation of the surface normal and the light vector are needed. 
 
Specular lighting can be expressed using the Blinn formulation, of : 
 

xponentShinynessE
malSurfaceNorHalfVectorIntensity )( •=

 
The Half vector is the vector halfway between the vector from the vertex to the eye and 
the vector from the vertex to the light. 
 

)( rLightVectoeVectorVertexToEyNormalizeHalfVector +=
 
 
For a directional light ( effectively located at infinity ) the light vector is constant – only 
the vertex to eye vector must be re-calculated per vertex.   
 
We can perform a vector subtraction to obtain the vector from the vertex to the eye, and 
then use a cube map to lookup the rest of the equation.  The Cube map must contain a set 
of 6 textures that, given a vector V, calculates H = ( Normalize( V ) + L ).  This can be 
generated once for each light.  If the light changes direction, the cubemap can be 
regenerated.  When cube maps are used for this purpose, they can be fairly low-res and 
still give good results, 32x32x6 faces works well for vector lookups, as in this example. 
 
We would perform the vector subtraction to calculate the VertexToEyeVector, and place 
its X,Y,Z components in the texture coordinates U,V, Q used to index into our 32x32x6 
sided cube map.  The cube map texture lookup will calculate the HalfVector on a per-
pixel basis.  As the surface normal becomes more aligned to the HalfVector, the intensity 
will increase. 
 
Alternatively, the D3DTSS_TCI_CAMERA_SPACE_NORMAL texture coordinate 
generation mode can be employed to generate this vector for us, thus avoiding computing 
even the vector subtraction on the CPU. 
 
To incorporate the Shinyness exponent of 2, simply render an additional pass, with 
SRC*DEST alpha blending.  This will allow the highlight to falloff more sharply towards 
its edges. 
 
So, to calculate specular light with an exponent of 1, set up the texture combiners to 
perform : 
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Intensity = SurfaceNormal DOT HalfVector 
 
Intensity = TEXTURE0 DOT TEXTURE1 
 
Dealing with Coordinate Systems 
 
When lighting is computed using vector dot products, the two vectors involved must be 
defined in the same coordinate system.  So, to ensure this, we can either recompute the 
normal maps to be defined in the same coordinate system as the light vector, or we can 
move the light vector into the coordinate system of the normal map. 
 
It is always cheaper to move the light vector into the same space as the normal map, since 
the normal map will contain more than one vector.  
 
Case Study : Lighting a Ceiling with a Diffuse Direcitonal Light 
 
To light a ceiling with dot product lighting, we generate a normal map corresponding to 
the ceiling’s orientation, with a surface normal of <0, -1, 0 >.  We can tile the normal 
map like any other texture. 
 
Given a diffuse, directional light defined in world space, simply apply  
 
Intensity = SurfaceNormal DOT LightVector 
 
Intensity = TEXTURE0 DOT TFACTOR 
 
That’s all that’s required for diffuse lighting world geometry.  On the next page we’ll 
look at specular… 
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Case Study : Lighting a Ceiling with a Specular Directional Light 
 
Use the same normal map as above. 
 
To compute the proper half vector, we create a cubemap that contains the half vectors for 
a given vertex to viewer vector.   
 
First, move the light into the same space as the normal map.  In this case we are using 
world space, so the light vector is fine as is. 
 
Move the eye position into world space – again we should already have this in world 
space. 
 
Create a 32x32 6 sided cube map texture that computes : 
 
HalfVector = Normalize( VertexToEyeVector + LightVector ) 
 
For each vertex, subtract the EyePosition from the VertexPosition, giving 
VertexToEyeVector. 
 
Pass in the X,Y,Z components of this vector into the cube-map’s texture coordinates as 
U,V, and Q. 
 
The normal map is TEXTURE0, and the cubemap is TEXTURE1. 
 
The cubemap must be accessed with 3d texture coordinates. 
 
 
Intensity = SurfaceNormal DOT HalfVector 
 
Intensity = TEXTURE0 DOT TEXTURE1 
 
 
Note that this assumes a local viewer ( which is the most accurate model ).  For an 
infinite viewer, we can simply use the ViewDirection in place of the VertexToEyeVector. 
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Case Study : Lighting a Model with a Specular Directional Light 
 
Use a normal map computed relative to model space. 
 
To compute the proper half vector, we create a cubemap that contains the half vectors for 
a given vertex to viewer vector.   
 
First, move the light into the same space as the normal map.  In this case we are using 
model space, so the light vector must be moved through the model hierarchy until it lies 
in the space in which the normal map was generated. 
 
Move the eye position into model space, again traversing the hierarchy if necessary. 
 
Create a 32x32 6 sided cube map texture that computes : 
 
HalfVector = Normalize( VertexToEyeVector + LightVector ) 
 
For each vertex, subtract the EyePosition from the VertexPosition, giving 
VertexToEyeVector. 
 
Pass in the X,Y,Z components of this vector into the cube-map’s texture coordinates as 
U,V, and Q.  This can be accomplished via camera space position texgen. 
 
The normal map is TEXTURE0, and the cubemap is TEXTURE1. 
 
The cubemap must be accessed with 3d texture coordinates. 
 
 
Intensity = SurfaceNormal DOT HalfVector 
 
Intensity = TEXTURE0 DOT TEXTURE1 
 
Note that this assumes a local viewer ( which is the the most accurate model ).  For an 
infinite viewer, we can simply use the ViewDirection in place of the VertexToEyeVector. 
 
Note that we either have to recompute the cubemap for a specular light for each model, or 
we can simply create a vector normalization cubemap, and compute  
 
HalfVector = ( Normalize( VertexToEyeVector ) + LightVector ) )  
 
on the CPU, and pass in the HalfVector as U,V,Q to obtain the normalized version of the 
HalfVector from the cubemap.  For an infinite viewer, we can skip the CPU 
normalization, and compute : 
 
HalfVector = (ViewDirection  + LightVector ) ) 
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